If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-20y-5=0
a = 4; b = -20; c = -5;
Δ = b2-4ac
Δ = -202-4·4·(-5)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{30}}{2*4}=\frac{20-4\sqrt{30}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{30}}{2*4}=\frac{20+4\sqrt{30}}{8} $
| -16y-20=36y-6 | | 4w-28-2=28w-20-9w | | -3(x-9)=-6x+36 | | 6y-y-y=0 | | 18y3+8y+24y2=0 | | (x-6)^2-20=0 | | u5–13u+36u=0 | | )9x3+9x=30x | | 9x3+9x=30x | | 3√x+4+3√2x+8=0 | | 6n+3=-22 | | -6n+3=-21 | | X+16/y=5 | | X^(2)-36x-299=0 | | 3-6n=-21 | | –18=p*2 | | –18=p/2 | | X^(2)-36x+299=0 | | x+30/6=1-3x/3 | | x^2+(x+2)^2=340 | | 25/2/3=k | | 12+d=17 | | 27x+14=0 | | 3.45x=8 | | 3x(x–2)–(x–6)=4(x–3)+10 | | 250=(3.14)r | | 81^2r×27^r/9^r=729 | | 5x+16=15x-4 | | 9x-22=-10+12x | | 0=x2+14x+48 | | 252/3=k- | | 6/11-9/7=n |